Predicting Changes in Estuarine Submerged Aquatic Vegetation Distribution from Increased Freshwater Delivery

> Thomas A. Frankovich¹, Frank Marshall², Mark Zucker¹ Steve Kelly⁴, and James W. Fourgurean¹

> > ¹ Florida International University
> > ² Cetacean Logic Foundation
> > ³U.S. Geological Survey
> > ⁴South Florida Water Management District

GEER 2015 Science in Support of Everglades Restoration April 21 - 23, 2015, Coral Springs, FL

Bill Perry, NPS

Where are the Mangrove Lakes?

The Mangrove Lakes are located in the mangrove estuaries between Florida Bay and the Everglades marsh

The Mangrove Lakes are :

Shallow (1.8m max) with extensive SAV beds (historically)

Chara hornemannii Ruppia maritima and American coots Wintering ducks

Ecosystems affected by reduced freshwater inflows exhibiting:

- estimated 20-30 psu mean salinity increase (McIvor et al. 1994)
- persistent phytoplankton blooms (up to 130 μ g Chl a L⁻¹)
- reduced SAV cover

The Mangrove Lakes are critical habitats once characterized by extensive SAV beds Study Sites

Alligator Creek sub-estuary

McCormick Creek sub-estuary

SAV and WQ monitoring since 2006 Sites used in habitat requirement model, Salinity sondes SAV and WQ measures

SAV % cover, quarterly - by species

Sediment Depth

WQ monitoring, monthly to bi-monthly

- temperature, salinity
- TotN, TotP, Phytoplankton chl-a
- Light attenuation (K_d) , water depth \longrightarrow Light@bottom
- Turbidity, CDOM

Hourly water temperature, Salinity, and water level

- datasondes in West Lake, Cuthbert Lake, 7 Palms Lake

SAV cover, Sediment depth, %Light@bottom used in habitat requirement model

Salinity Climate

Salinity varies along estuarine gradient and exhibits pronounced seasonality

Light and Nutrient Climate

Alligator Creek sub-estuary McCormick Creek sub-estuary

Distinct differences in light availability, nutrients, and phytoplankton abundance between sub-estuaries.

Community group spatial distribution

Chara occurs in upstream lakes, Halodule occurs in coastal embayments Mix and Bedrock communities only in McCormick sub-estuary. Low SAV (mud bottom) confined to western drainage Community and Habitat analyses - data matrix construction

Data matrix construction

Time period: August 1 2008 - April 30 2014

Variables: SAV cover, Salinity (mean, CV), %Light, Sed. Depth, TN, TP, and Chl a

Water year seasonal means calculated for each variable (y):

Year (xxxx), Season, (SS) Site, Variable mean (y)

Seasons: Early Wet (May - Jul), Late Wet (Aug - Oct), Early Dry (Nov - Jan), Late Dry (Feb - Apr)

Cases with missing seasonal means removed

86 complete cases available for community and habitat analyses

Identification of SAV community groups

Cluster and Similarity Profile tests (SAV cover data only) identified 5 groups:

Chara (high cover)

Halodule / Batophora (high cover)

Hard bottom (low cover)

Unvegetated/low Ruppia cover soft bottom

Low Chara / Halodule mix

Habitat requirement model - Discriminant Function Analysis (DFA)

Stepwise DFA

Sed. Depth, mean salinity, salinity CV, %Light entered into model

Completed model:

Sed. Depth, %Light, mean salinity selected by model as useful in discriminating community groups

67% of cases correctly classified to community groups versus 20% accuracy expected by chance

DFA was successful in relating environmental habitat variables to SAV community groups

Relative importance of habitat variables in DFA

	Correlation <u>Sed. Depth</u>	Correlation % Light	Correlation mean Salinity	<u>% of variance</u>
DF1	0.97	0.30	0.37	74.3
DF2	0.07	0.95	0.21	18.6
DF3	-0.23	-0.05	0.91	7.1

Sediment Depth >> %Light at bottom and mean Salinity in accounting of variance in DF model

Classification accuracy of individual SAV groups

<u>SAV group</u>	Prior Prob. (%)	Correctly Classified (%)	Highest % Incorrect group
1 Chara	31	59	4
2 Halodulel Batophora	19	81	4
3 Hard bottom	16	79	1, 2, 5
4 Unvegetated	22	79	2
5 Low <i>Charal</i> <i>Halodule</i> Mix	12	30	3,4

Model classification of all SAV groups better than chance. Poor classification of Mix group may reflect inequilibrium.

DFA ordination plot

Sediment depth dominates separation of SAV groups Relationships with light and salinity are distorted!

Conclusions/ Next Steps

1 Remove hard bottom sites from data matrix

2 Add additional cases, focusing on salinity, salinity CV, and light

3 Rerun model with new data matrix

4 Use discriminant functions to produce predictive model of future SAV groups

5 Construct new data matrix with new salinity and light climates predicted for anticipated increases in freshwater deliveries.

6 Run predictive model to predict changes in SAV distribution

Acknowledgments

We thank: Michelle Blaha, Fabiola Santamaria, (SFWMD); Milagros Timiraos, Pete Lorenzo (FIU) Kevin Cunniff (Rookery Bay Estuarine Reserve) Theresa Strasizar (FAU)

Dave Rudnick (Everglades National Park)

Funding provided by Everglades National Park